240AR060 - Introduction to ROS

INDEX

- 1. BASIC CONCEPTS
 - 1.1. What is ROS
 - 1.2. ROS core concepts
 - 1.3. An application
 - 1.4. ROS command-line tools
- 2. DEVELOPMENT TOOLS
 - 2.1. Writing, compiling and linking C++ programs
 - 2.2. ROS file system and package structure
 - 2.3. Catkin tools
 - 2.4. Version control using GIT
 - 2.5. Good practices: naming, documentation, logging
- 3. COMMUNICATIONS USING TOPICS
 - 3.1. A publisher program
 - 3.2. A subscriber program
 - 3.3. Standard messages
- 4. THE LAUNCH UTILITY
 - 4.1. Using and understanding launch files
 - 4.2. Graph resource names
 - 4.3. Managing names in launch files
 - 4.4. ROS Parameters
- 5. COMMUNICATIONS USING SERVICES
 - 5.1. A client program
 - 5.2. A server program
 - 5.3. Standard services
- 6. TOOLS
 - 6.1. The TF package
 - 6.2. Robot modelling using URDF
 - 6.3. Visualization using Rviz
 - 6.4. The rqt_plot utility
 - 6.5. ROS bags
- 7. SIMULATION: BASIC ISSUES
 - 7.1. Gazebo basics
 - 7.2. Integration to ROS
 - 7.3. Configuring launch files
 - 7.4. Tunning URDF models
- 8. SENSORS
 - 8.1. Sensors in simulation
 - 8.2. Pose estimation using fiducial markers
- 9. COMMUNICATIONS USING ACTIONS
 - 9.1. Working with ROS actionlib
 - 9.2. An action server
 - 9.3. An action client
- 10. ROBOT CONTROL
 - 10.1. ROS control overview
 - 10.2. Controllers
 - 10.3. Hardware abstraction layer
 - 10.4. Using ros_control in Gazebo

BIBLIOGRAPHY

Tutorials: https://sir.upc.edu/projects/rostutorials/index.html

Books:

(basic) A gentle Introduction to ROS, Jason M. O'Kane, 2013. Available at: https://www.cse.sc.edu/~jokane/agitr/

(complementary) Mastering ROS for robotic programming, Lentin Joseph, Packt Publishing 2015.

Book webpage: https://mastering-ros.com/

Book tutorials source code: https://github.com/qboticslabs/mastering ros/

Web resources:

ROS wiki page: http://wiki.ros.org/

ROS tutorials: http://wiki.ros.org/ROS/Tutorials/
Gazebo tutorials: http://jazebosim.org/tutorials/
Catkin tutorials: http://jbohren.com/tutorials/

Git tutorial: https://guides.github.com/activities/hello-world/

ROS cheatsheet: https://github.com/ros/cheatsheet/releases/download/0.0.1/ROScheatsheet_catkin.pdf/

Git cheatsheet: https://www.atlassian.com/git/tutorials/atlassian-git-cheatsheet

ASSESSMENT

Partial Exam: 20% (theoretical questions and short exercises)

Final Work: 80% (deliverable 20%, demonstration and oral presentation 60%)

Regulations

The partial exam will take place on April 11th, 5 P.M.

- The Final Work must be done in teams of two/three.
- Final Work deliverable: git repository with commented code and Readme files.
- The oral presentation of the Final Work is scheduled on June 22, 2023.

TEMPORAL DISTRIBUTION

	Date	TUTORIAL SESSION	DEADLINES	CLASSROOM
1	24/02	1. Basic concepts		H-5.4
		2. <u>Development tools</u>		
2	03/03	3. Communications using topics	Exercise 0	H-5.4
3	10/03	4. The launch utility	Exercise 1	H-5.4
		6. <u>Tools (6b)</u>		
4	17/03	5. Communications using services	Exercise 2	H-5.4
5	24/03	6. Tools 6 (6a,6c,6d)	Exercise 3	H-5.4
6	31/03	7. <u>Simulation</u>	Exercise 4	H-5.4
		8. <u>Sensors</u>		
	07/04	Easter week		
	14/04	Partial exams		
7	21/04	Final work: Hands-on session - Perception	Exercise 5	ESAII Robotics Lab
8	28/04	9. Communication using actions		H-5.4
9	05/05	10. Robot control	Exercise 6	H-5.4
10	12/05	<u>Final work</u> : Hands-on session	Exercise 7	ESAII Robotics Lab
11	19/05	Final work: Hands-on session		ESAII Robotics Lab
12	26/05	Final work: Hands-on session		ESAII Robotics Lab
		ROS2		
	22/06	Final Work oral presentations		ESAII Robotics Lab

PERSONAL ADVISE

Professor	Monday	Wednesday	Thursday
Rosell, Jan (jan.rosell@upc.edu)		9:00 ÷ 12:00	9:00 ÷ 12:00
Palomo-Avellaneda, Leopold (leopold.palomo@upc.edu)	15:30 ÷ 17:00	15:30 ÷ 17:00	